Dampfdruckmessungen an festem Natriumfluorid*

Von

P. Entner und A. Neckel

Aus dem Institut für Physikalische Chemie der Universität Wien

Mit 4 Abbildungen

(Eingegangen am 28. März 1967)

Eine Apparatur zur Messung von Dampfdrucken im Druckbereich von 10^{-4} bis 10^{-1} Torr nach der Effusions—Torsions-Methode wird beschrieben. Mit Hilfe dieser Apparatur wurden die Dampfdrucke von festem NaF im Temperaturintervall von 1016° —1236° K gemessen. Aus den Totaldrucken und unter Verwendung der von *Eisenstadt, Rothberg* und *Kusch* bestimmten Konzentrationsverhältnisse von dimerer zu monomerer Spezies in einem effundierenden Dampfstrahl wurden die Partialdrucke von monomerem NaF und dimerem (NaF)₂ ermittelt. Mit Hilfe der statistisch berechneten thermodynamischen Funktionen der gasförmigen Spezies und jenen von festem NaF wurden nach dem dritten und dem zweiten Wärme-Hauptsatz die Sublimationswärmen für 0° K berechnet.

An apparatus for the measurement of vapour pressures between 10^{-4} and 10^{-1} Torr by an effusion-torsion technique is described. Using this apparatus, the vapour pressures of solid NaF in the temperature range of 1016° — 1236° K have been measured. The ratio of the concentration of the dimeric to the monomeric species in an effusing molecular beam of alkalifluoridmolecules has been determined by *Eisenstadt*, *Rothberg* and *Kusch*. From these data and the measured total vapour pressures the partial pressures of monomeric NaF and dimeric (NaF)₂ have been obtained. The heat of sublimation of the monomeric and the dimeric species at 0° K have been computed, using the vapour pressures and thermodynamic functions for the gaseous species calculated statistically.

^{*} Herrn Prof. Dr. F. Wessely in Verehrung gewidmet.

Einleitung

Chemische Verfahren und metallurgische Prozesse bei hohen Temperaturen haben in den letzten Jahre große technische Bedeutung erlangt. Demgegenüber besteht ein fühlbarer Mangel an verläßlichen thermodynamischen Daten, deren Kenntnis jedoch für die Vorausberechnung von Reaktionsverlauf und Gleichgewichtslagen unbedingt erforderlich ist. In der vorliegenden Arbeit wird eine Apparatur zur Messung von Dampfdrucken im Druckbereich von 10^{-4} bis 10^{-1} Torr beschrieben. Mit Hilfe dieser Anordnung werden die Totaldrucke von festem Natriumfluorid gemessen und die erhaltenen Ergebnisse zur Bestimmung der thermodynamischen Funktionen der Sublimationsreaktionen herangezogen.

Die gasförmigen Alkalihalogenid-Moleküle beanspruchen ferner deshalb erhebliches Interesse, weil es vor kurzem^{1, 2, 3} gelang, mit Hilfe elektrostatischer Modellvorstellungen befriedigende Werte für Dissoziationsenergien, Schwingungsfrequenzen, Dipolmomente und weitere Eigenschaften dieser Moleküle zu berechnen.

Experimenteller Teil

Der Dampfdruck von NaF wurde nach der Torsions—Effusions-Methode⁴ bestimmt. Bei diesem Meßverfahren befindet sich die zu untersuchende Substanz in einer Zelle, die an gegenüberliegenden Wänden, gegeneinander versetzt, zwei kleine Öffnungen besitzt. Diese Zelle hängt an einem Torsionsfaden in einer evakuierten Apparatur und kann mit Hilfe eines Widerstandsofens erhitzt werden. Bei Temperaturerhöhung verdampft die Probe und der durch die Effusionsöffnungen ausströmende Molekularstrahl erteilt der Zelle ein Drehmoment, wodurch sie aus ihrer Ruhelage ausgelenkt wird. Im Gleichgewicht kompensiert die Rückstellkraft des tordierten Fadens das Drehmoment des ausströmenden Gasstrahls. Der Dampfdruck der Probensubstanz ist dem Torsionswinkel proportional und ergibt sich aus

$$P = \frac{2 D \alpha}{a_1 q_1 f_1 + a_2 q_2 f_2}$$

Hierbei bedeuten:

- P: Gesamtdruck,
- α : Torsionswinkel,
- D: Direktionskraft,
- a1, a2: Abstand der Effusionsöffnungen von der Torsionsachse,
- q_1, q_2 : Fläche der Effusionsöffnungen,
- f_1, f_2 : Korrekturfaktoren nach *Searcy*⁵ für endliche Wandstärke der Effusionsöffnungen.

² C. T. O'Konski und W. I. Higuchi, J. Chem. Physics 23, 1175 (1955).

³ J. Berkowitz, J. Chem. Physics 29, 1386 (1958).

⁴ J. O'M. Bockris, J. L. White und J. D. Mackenzie, Physicochemical Measurements at High Temperatures, Butterworth, London, 1959.

¹ E. S. Rittner, J. Chem. Physics 19, 1030 (1951).

⁵ R. D. Freeman und A. W. Searcy, J. Chem. Physics 22, 762 (1954).

Für die Effusionsversuche wurden drei Molybdänzellen (Mo 1, Mo 2, Mo 3) und eine Platinzelle (Pt 1) verwendet. Die Torsionsrichtung läßt sich durch Drehen der Zelle in ihrer Halterung um einen Winkel von 180° umkehren. Jede Meßreihe wurde, unter sonst gleichbleibenden Versuchsbedingungen, mit veränderter Torsionsrichtung wiederholt. Auf diese Weise konnten etwa auftretende Nullpunktsverschiebungen während des Versuchsverlaufes gefunden und korrigiert werden. Die geometrischen Konstanten a_i und q_i der Zelle wurden durch Ausmessen einer 20fach vergrößerten photographischen Aufnahme der Zelle ermittelt. Die entsprechenden Searcy-Faktoren wurden der Arbeit von Freeman und Searcy⁵ entnommen. Da beide Effusionsöffnungen einer Zelle praktisch den gleichen Querschnitt besaßen, wurde mit einem Mittelwert von f gerechnet. Die Rückstellkraft der Quarz-Torsionsfäden (F 1, F 2, F 3) wurde aus der Schwingungsdauer eines Probekörpers mit bekanntem Trägheitsmoment bestimmt.

Tabelle 1. Geometrische Faktoren der Eilusionszeil
--

Zelle	$(a_1 = a_2 = a)$	$q \cdot 10^2 \text{ cm}^2$ $(q = q_1 + q_2)$	$rac{aq \cdot 10^2}{\mathrm{cm}^3}$	$\log \overline{f}$	
Pt 1	1,066	3,253	3,468	0,040	
Mo 1	1,370	1,708	2,340	0,060	
Mo 2	1,282	0,346	0,444	0,000	
Mo 3	1,289	1,373	1,770	0,068	

Tabelle 2. Direktionskraft der Torsionsfaden $[g \text{ cm}^{-2} \text{ sec}^{-2} \text{ rad}^{-1}]$

F 1:	7,328
F 2:	0,6823
F 3:	0.1520

Der Widerstandsofen besteht aus sechs Mo-Heizwendeln (Durchmesser des Heizdrahtes 0,5 mm; Länge einer Wendel 30 cm), die, von Korundstäben gestützt, die Effusionszelle in Form eines regelmäßigen Sechseckes umgeben. Mo-Schilde verhindern Strahlungsverluste und gewährleisten eine gleichmäßige Temperaturverteilung im Bereich der Effusionszelle. Mit Hilfe eines regelbaren Transformators (Leistung 4 kW) kann die Heizleistung und damit die Temperatur variiert werden. Die Temperatur der Effusionszelle wird mit einem Pt/PtRh-Thermoelement gemessen, dessen heiße Lötstelle sich unmittelbar unter der Effusionszelle befindet. Vorversuche hatten gezeigt, daß der Temperaturunterschied zwischen Zelle und Lötstelle 3°C nicht überschreitet. Die Thermospannung wird mit einem Disselhorst-Kompensator ermittelt. Die Eichung der Thermoelemente erfolgte mit Hilfe der Schmelzpunkte von NaCl, Ag und Au. Die Genauigkeit der Temperaturmessung wird auf $\pm 4^{\circ}$ C geschätzt. Der Drehwinkel α der Effusionszelle wird optisch bestimmt. Mit Hilfe eines Fernrohres wird über einen Spiegel, der mit dem Torsionssystem fest verbunden ist, eine in 175 cm Entfernung von der Torsionsachse angebrachte Skala beobachtet. Die Ablesegenauigkeit beträgt \pm 5 · 10⁻⁴ rad. Die Apparatur wird mit Hilfe einer dreistufigen Quecksilber-Diffusionspumpe, der zwei mit flüssigem Stickstoff beschickte Kühlfallen vorgeschaltet sind, evakuiert. Das Betriebsvakuum von $1-2 \cdot 10^{-5}$ Torr wird jeweils mit einem Penning-Vakuummeter überprüft. Als Probensubstanz wurde NaF p. A. (Riedel-de Haën) verwendet, das mehrere Tage bei 130° C getrocknet worden war.

Ergebnisse

Innerhalb des Temperaturintervalles von 1016 bis 1236° K wurde der Gesamtdampfdruck P für 242 Meßpunkte ermittelt (Abb. 1). Innerhalb der Meßgenauigkeit konnte in keinem Falle eine Abhängigkeit des Dampfdruckes vom Querschnitt der Effusionsöffnungen beobachtet werden. Um die Temperaturabhängigkeit des Totaldruckes P zu erhalten, wurden die Meßpunkte nach der Methode der kleinsten Quadrate ausgeglichen. Abb. 2 zeigt einen Vergleich der Totaldruck-Kurve mit Messungen anderer Autoren, während in Tab. 3 die Konstanten der Dampfdruck-Gleichung (2) für den Totaldruck einander gegenübergestellt werden.

$$\log P = -\frac{a}{T} + b \tag{2}$$

Tabelle 3. Konstanten der Dampfdruck-Gleichung für den Totaldruck (P in Torr)

Autor	T-Bereich (°K)	a	ь		
Niwa (1938) ⁶ Sense et al. (1957) ⁷ Pugh und Barrow (1958) ⁸ diana Arbait	$\begin{array}{r} 773 - 1113 \\ 1207 - 1269 \\ 1023 - 1166 \\ 1016 - 1236 \end{array}$	$13 540 \\ 14 856 \\ 14 350 \\ 14 396$	$10,375 \\11,3315 \\10,811 \\10,926$	$(1)^*$ (2) (3) (4)	

* Numerierung in Abb. 2.

Mit Hilfe der Methode der kernmagnetischen Resonanz⁹, massenspektrometrischer Untersuchungen¹⁰ und Messungen der Geschwindigkeitsverteilung gasförmiger Alkalihalogenidmoleküle¹¹ konnte die Existenz assoziierter Moleküle in der Gasphase nachgewiesen werden. *Miller* und *Kusch*¹¹ untersuchten die Geschwindigkeitsverteilung von Alkalihalogenidmolekülen, die aus einer Effusionszelle ausströmen, in Abhängigkeit von der Temperatur. Aus der Geschwindigkeitsverteilung kann das Konzentrationsverhältnis a_2 der dimeren zur monomeren Spezies im effundierenden Gasstrahl ermittelt werden. Trimere treten im Falle von NaF im untersuchten Temperaturbereich offenbar nicht auf.

⁶ K. Niwa, J. Fac. Sci. Hokkaido Univ. 2, 201 (1938), zitiert in Landolt-Börnstein, Bd. II, 1, S. 76, 6. Auflage, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1960. Die dort angegebene Gleichung für den Dampfdruck wurde auf die Form der Gl. (2) umgerechnet.

⁷ K. A. Sense, C. A. Alexander, R. E. Bowman, R. W. Stone und R. B. Filbert jr., J. Physic. Chem. **61**, 384 (1957).

⁸ A. C. P. Pugh und R. F. Barrow, Trans. Farad. Soc. 54, 671 (1958).

⁹ S. A. Ochs, R. E. Coté und P. Kusch, J. Chem. Physics 21, 459 (1953).

¹⁰ R. C. Schoonmaker und R. F. Porter, J. Chem. Physics 30, 283 (1959).

¹¹ R. C. Miller und P. Kusch, J. Chem. Physics 25, 860 (1956).

Zur Aufteilung der nach der Torsions-Effusionsmethode ermittelten Gesamtdrucke in die Partialdrucke des monomeren (p_1) und dimeren (p_2)

Abb. 2. Vergleich der von verschiedenen Autoren gemessenen Totaldrucke

Niwa (1938)⁶
 Sense et al. (1957)⁷
 Pugh und Barrow⁸

4) diese Arbeit

Natriumfluorids wurden die von Kusch et al.¹² ermittelten Konzentrationsverhältnisse a_2 in Abhängigkeit von der Temperatur ausgeglichen. Man erhält folgende Temperaturabhängigkeit:

$$\log a_2 = -\frac{0.1279 \cdot 10^{-4}}{T} + 0.2917 \quad (T^{\circ} \,\mathrm{K}) \tag{3a}$$

¹² *M. Eisenstadt*, *G. M. Rothberg* und *P. Kusch*, J. Chem. Physics **29**, 797 (1958).

H. 3/1967] Dampfdruckmessungen an festem Natriumfluorid

Um eine einfache Berechnung von p_1 und p_2 nach Gl. (5) bzw. (6) zu ermöglichen, wurde ferner a_2 linear ausgeglichen:

$$a_2 = 4,653 \cdot 10^{-4} T - 0,3821 (T^{\circ} \text{ K})$$
 (3 b)

An den Grenzen des Temperaturintervalles ergeben sich folgende Unterschiede:

$$T = 1016^{\circ}$$
 K: a_2 (nach 3 a) = 0,107, a_2 (nach 3 b) = 0,091;

$$T = 1236^{\circ} \text{ K}$$
: $a_2 \text{ (nach 3 a)} = 0,181, \ a_2 \text{ (nach 3 b)} = 0,193,$

während im Mittelbereich die Übereinstimmung besser ist. Da diese Unterschiede innerhalb des Meßfehlers von a_2 liegen, sollten sie keinen wesentlichen Fehler in den Partialdrucken bewirken.

Da die monomeren Moleküle bevorzugt effundieren, sind sie im effundierenden Gasstrahl um den Faktor $\sqrt{2}$ angereichert.

Das Konzentrationsverhältnis bzw. der Quotient der Partialdrucke innerhalb der Effusionszelle ist daher durch

$$\frac{c_2}{c_1} = \frac{p_2}{p_1} = a_2 \sqrt[1]{2} \tag{4}$$

gegeben. Aus dieser Beziehung erhält man für die Partialdrucke

$$p_1 = \frac{P}{1 + a_2 \sqrt{2}}$$
 und $p_2 = \frac{P a_2 \sqrt{2}}{1 + a_2 \sqrt{2}}$. (5)

Die Gleichgewichtskonstante der Dissoziationsreaktion

$$(NaF)_2 = 2 NaF \tag{6}$$

kann nach

$$K_{c} = \frac{c_{1}^{2}}{c_{2}} = \frac{P}{a_{2}\sqrt{2} (1 + a_{2})/2} RT$$
(7)

berechnet werden.

Die aus dem Gesamtdruck mit Hilfe der Konzentrationsverhältnisse a_2 berechneten Werte für die Partialdrucke (p_1, p_2) und für die Gleichgewichtskonstante der Dissoziation wurden nach der Methode der kleinsten Quadrate ausgeglichen (Abb. 1). Für den untersuchten Temperaturbereich (1016-1236° K) erhält man folgende Gleichungen $(p_1, p_2 \text{ in Torr, } K_c \text{ in Mol/l})$

$$\log p_1 = -\frac{14095}{T} + 10,579 \tag{8}$$

P. Entner und A. Neckel: [Mh. Chem., Bd. 98

$$\log p_2 = -\frac{15938}{T} + 11,515 \tag{9}$$

$$\log K_c = -\frac{11765}{T} + 4,3637 \tag{10}$$

Diese Beziehungen liefern folgende Werte für die Sublimationswärmen der monomeren (ΔH_s^1) und dimeren Spezies (ΔH_s^2) und für die Dissoziationsenergie ΔE :

$$egin{array}{lll} \Delta \; H^1_{s, \; 1100^\circ \, {
m K}} \; = \; 64\,470 \; {
m cal/Mol} \ \Delta \; H^2_{s, \; 1100^\circ \, {
m K}} \; = \; 72\,900 \; {
m cal/Mol} \ \Delta \; E \; _{1100^\circ \, {
m K}} \; = \; 53\,810 \; {
m cal/Mol} \ \Delta \; E \; = \; 54\,300 \; \pm \; 1400 \; {
m cal/Mol}^{12} \end{array}$$

Die Dissoziationsenthalpie ($\Delta E + RT$) ist mit den Sublimationswärmen ΔH_{s^1} und ΔH_{s^2} durch die Beziehung

$$\Delta E + RT = 2 \Delta H_s^1 - \Delta H_s^2$$

verknüpft.

Thermodynamische Auswertung

Die Auswertung der Dampfdruckmessungen nach dem zweiten bzw. dritten Wärmehauptsatz erfordert die Kenntnis der thermodynamischen Funktionen sowohl von festem NaF als auch jene der gasförmigen Spezies.

a) Thermodynamische Funktionen von festem NaF

Nach King¹³ ist die Molwärme C_p im Temperaturbereich von 0 bis 114,61° K durch einen Debye- und einen Einstein-Term darstellbar.

$$0 - 114,61^{\circ} \mathrm{K} \colon C_{p} = D\left(\frac{340}{T}\right) + E\left(\frac{391}{T}\right)$$
(11)

1

Für den Temperaturbereich von 114,61 bis 298,15° K wurden die von $King^{13}$ gemessenen C_p -Werte ausgeglichen. Man erhält folgende Beziehung

114,61 — 298,15°K:
$$C_p = 9,4016 + 8,188 \cdot 10^{-3} T - 0,5264 \cdot 10^5 \frac{1}{T^2}$$
 (12)

Für den Bereich von 298,15° K bis zum Schmelzpunkt (1269° K) wurden die Angaben von O'Brien und Kelley¹⁴ verwendet.

298,15 — 1269°K:
$$C_p = 10,396 + 3,8778 \cdot 10^{-3} T - 0,3297 \cdot 10^5 \frac{1}{T^2}$$
 (13)

¹³ E. G. King, J. Amer. Chem. Soc. 79, 2056 (1957).

1090

Werte von $G_T^{\circ} - H_0^{\circ}$, S_T° und $H_T^{\circ} - H_0^{\circ}$ für drei Temperaturen sind in Tab. 4 angegeben.

Tabelle 4. Werte thermodynamischer Funktionen von festem NaF

	114,61° K	298,15° K	900° K
$G_T^{\circ} - H_0^{\circ} \operatorname{cal}_{15}^{\circ} \operatorname{Mol}^{-1}$ $S_T^{\circ} \operatorname{cal}_{15}^{\circ} \operatorname{Grad}^{-1} \operatorname{Mol}^{-1}$	-124,59 3,496	-1632 - 12.28	-13730 25.93
$H_T^{\circ} - H_0^{\circ} \text{ cal}_{15}^{\circ} \text{ Mol}^{-1}$	276,08	2029	9610

Der sich nach den Gleichungen (11) und (12) ergebende Wert für $S^{\circ}_{298,15} = 12,28 \text{ cal}_{15^{\circ}} \text{ Grad}^{-1} \text{ Mol}^{-1}$ kann mit den Angaben von King $S^{\circ}_{298,15} = 12,12 \text{ cal}_{15^{\circ}} \text{ Grad}^{-1} \text{ Mol}^{-1}$ verglichen werden.

b) Thermodynamische Funktionen von monomerem Natriumfluorid

Die thermodynamischen Funktionen von gasförmigem monomeren NaF wurden statistisch berechnet. Gleichgewichtsabstand r_e , Schwingungsfrequenz ω_e und Anharmonizitätskonstante x_e sind kürzlich von *Bauer* und Lew^{15} und von *Ritchie* und Lew^{16} experimentell bestimmt worden.

> $r_e = 1,92595 \cdot 10^{-8} \text{ cm},$ $\omega_e = 536 \text{ cm}^{-1},$ $x_e \omega_e = 3,4 \text{ cm}^{-1}.$

Der Anharmonizitätsbeitrag (Δ anh) zu den thermodynamischen Funktionen wurde nach *Schäfer*¹⁷^a, der Streckungseffekt und die Wechselwirkung zwischen Rotation und Schwingung (Δ rot-schw) nach ¹⁷^b berechnet. Über die Ergebnisse gibt Tab. 5 Auskunft, in der auch die Einzelbeiträge zu $G_T^{\circ} - H_0^{\circ}$ und C_p angegeben sind.

Im Temperaturbereich von 900°—1300° K kann die Molwärme C_p von monomerem NaF durch die Beziehung

$$C_{\mathcal{P}(\text{Gas, monomer})} = 8,8038 + 0,2446 \cdot 10^{-3} T - 0,47057 \cdot 10^{5} \frac{1}{T^{2}}$$
(14)

wiedergegeben werden.

1

¹⁴ C. J. O'Brien und K. K. Kelley, J. Amer. Chem. Soc. 79, 5616 (1957).

¹⁵ R. K. Bauer und H. Lew, Canad. J. Physics 41, 1461 (1963).

¹⁶ R. K. Ritchie und H. Lew, Canad. J. Physics 42, 43 (1964).

¹⁷ a Kl. Schäfer, Statistische Theorie der Materie, Bd. 1, Kap. V, Gl. (65) bzw. (67); Vandenhoeck und Rupprecht, Göttingen, 1960.

¹⁷ b Kl. Schäfer, ibid., Gl. (73).

	$^{S}T^{\circ}$	51,954	52,010	54,408	56, 319	57,907	59,264	60,448	61,498	62,442	63, 310	64,083	64,808	65,479
NaF	$^{\circ}H_{T}^{\circ}-H_{0}^{\circ}$	2974	2983	3818	4 677	5549	$6\ 432$	7 320	$8\ 215$	9 114	$10\ 023$	$10 \ 921$	$11\ 828$	$12\ 739$
นอาจบ	c_p	8,168	8,176	8,483	8,660	8,773	8,861	8,919	8,966	9,004	9,041	9,069	9,094	9,119
gem monol	Δ (rot — seinw)	0,024	0,024	0,034	0,043	0,053	0,060	0,069	0,078	0,087	0,099	0,107	0,113	0,122
sförmiş grad-1 M	$C_v \over \Delta \ { m anh}$	0,022	0,022	0,026	0,029	0,033	0,050	0,058	0,066	0,074	0,082	0,090	0,099	0,107
tionen von ga dol ⁻¹ bzw. cal ₁₅ ,	$tr + rot + schw_{harm}$	6,135	6,143	6,436	6,601	6,700	6,763	6,806	6,835	6,857	6,873	6,886	6,896	6,903
te Funk in cal ₁₅ N	gesamt	$12\ 516$	$12 \ 620$	17 945	$23 \ 483$	$29 \ 195$	$35\ 053$	41 038	47 133	53 328	$59\ 618$	65 979	72 422	78 932
modynamisch (Alle Angaben	$-H_0^\circ)$ Δ (rot — schw)	4	4	9	×	10	12	14	17	21	24	28	33	37
ð. Ther	$-({^{G}T^{\circ}} - \Delta anh$	4	4	9	6	13	17	22	28	35	42	50	59	68
Tabelle	tr + rot + schwharm	12 508	$12 \ 612$	17 933	23 466	29 172	$35\ 024$	41 001	47088	53 273	59552	65901	72 330	78826
	$T^{\circ}K$	298, 15	300	400	500	600	700	800	006	1000	1100	1200	1300	1400

1092

H. 3/1967] Dampfdruckmessungen an festem Natriumfluorid

c) Thermodynamische Funktionen von dimerem Natriumfluorid (Na_2F_2)

Die Frequenzen der Normalschwingungen und die Gleichgewichtsabstände des dimeren Moleküls wurden von Berkowitz^{3, 18} auf Grund einer Potentialfunktion für ein elektrostatisches Modell berechnet. Berkowitz¹⁸ nimmt für das dimere Molekül eine ebene rhombische Anordnung der Symmetrie D_{2h} an. Für den Abstand des Fluorions $r_{\rm F}$ und den Abstand des Natriumions $r_{\rm Na}$ von der Symmetrieachse erhält man die Werte $r_{\rm F} = 1,648$ Å und $r_{\rm Na} = 1,400$ Å. Für die 6 Schwingungsfrequenzen von Na₂F₂ berechnet Berkowitz folgende Werte:

Schwingungsrasse:	$\mathbf{A}_{\mathbf{g}}$	A'g	B _{1g}	B _{1u}	B _{2u}	B _{3u}
$\omega~(\mathrm{cm}^{-1})$	350	209	270	201	294	313

 $\omega \colon \mathrm{Wellenzahl}$

Auf Grund dieser Angaben wurden die thermodynamischen Funktionen für das dimere Molekül statistisch berechnet. Die erhaltenen Ergebnisse sind in Tab. 6 zusammengestellt.

Die Molwärme C_p von Na₂F₂ kann im Temperaturbereich von 900° bis 1300° K durch die Gleichung

$$C_{p(\text{Gas, dimer})} = 18,690 + 0,1100 \cdot 10^{-3} T - 0,8200 \cdot 10^{5} \frac{1}{T^{2}}$$
(15)

dargestellt werden.

Tabelle 6. Thermodynamische Funktionen von dimerem Natriumfluorid (in $cal_{15}^{\circ} Mol^{-1}$ bzw. $cal_{15}^{\circ} grad^{-1} Mol^{-1}$)

T°, K	$-(G_T^\circ - H_0^\circ)$	s_T °	Cp	$H_T^{\circ} - H_{\mathfrak{g}}^{\circ}$
298,15	15 040	72,05	17,25	6 442
400	22 670	77,52	17,93	8 338
500	30 640	81,78	18,26	$10\ 250$
600	39 000	85,31	18,44	$12 \ 186$
700	47 690	88,32	18,55	$14\ 134$
800	56 650	90,93	18,63	16 094
900	65 870	93,24	18,68	18 046
1000	$75\ 270$	95,32	18,71	20050
1100	84 920	97,20	18,74	22000
1200	94 730	98,92	18,76	23 974
1300	104 700	100.50	18.78	$25 \ 950$

¹⁸ J. Berkowitz, J. Chem. Physics 32, 1519 (1960).

d) Thermodynamische Funktionen der Sublimationsreaktionen

Zur Berechnung der Sublimationswärme $\Delta H_0^{\circ(i)}$ von monomerem (i = 1) bzw. dimerem (i = 2) Natriumfluorid nach dem 3. Wärme-Hauptsatz geht man zweckmäßigerweise von den freien Enthalpie-Funktionen aus:

$$\frac{\Delta G_{T}^{\circ (i)} - \Delta H_{0}^{\circ (i)}}{RT} = \frac{G_{T}^{\circ (i)} - H_{0}^{\circ (i)}}{RT} - \frac{G_{T}^{\circ (s)} - H_{0}^{\circ (s)}}{RT} = \frac{1}{RT} \Delta [G_{T}^{\circ (i)} - H_{0}^{\circ (i)}], \qquad (15)$$

wobei für die Differenz der freien Enthalpie-Funktionen von gasförmiger Spezies und festem NaF abkürzend $\frac{1}{RT} \Delta [G^{\circ (i)} - H_0^{\circ (i)}]$ geschrieben wurde.

Aus (15) erhält man mit

$$\Delta G_T^{\circ (i)} = -RT \ln p_i \tag{16}$$

die Sublimationswärme am absoluten Nullpunkt $\Delta \; {H_0}^{\circ(i)}$

$$\Delta H_0^{\circ (i)} = -RT \ln p_i - \Delta \left[G_T^{\circ (i)} - H_0^{\circ (i)} \right].$$
(17)

Aus den angegebenen thermodynamischen Daten erhält man für monomeres NaF

$$\Delta \left[G_T^{\circ (1)} - H_0^{\circ (1)} \right] = 1493,57 - 51,2472 T + + 1,592 T \ln T + 1,8166 \cdot 10^{-3} T^2 + 7,045 \cdot 10^3 T^{-1}$$
(18)

und für (NaF)₂

$$\Delta \left[G_{T}^{\circ (2)} - H_{0}^{\circ (2)} \right] = 3804,91 - 64,6496 T + + 2,102 T \ln T + 3,8228 \cdot 10^{-3} T^{2} + 8,03 \cdot 10^{3} T^{-1}$$
(19)

Die aus den einzelnen Meßpunkten berechneten Werte für die Sublimationswärmen zeigen praktisch keinen Gang (Abb. 3 und 4). Eine Ausgleichsrechnung führt zu den in Tabelle 7 angegebenen Mittelwerten.

	H_0	° (i)	H_{2c}°	(i) 8.15
	3. Wärme-Haupts.	2. Wärme-Haupts.	3. Wärme-Haupts.	2. Wärme-Haupts.
NaF	66,12	66,88	67,06	67,82
$(NaF)_2$	75,92	75,78	78,29	78,15

Tabelle 7. Sublimationswärmen von monomerem und dimerem NaF bei 0°K und 298°K (in kcal/Mol)

H. 3/1967] Dampfdruckmessungen an festem Natriumfluorid

Die Auswertung nach dem 2. Wärmehauptsatz ergibt die in Tab. 7 angeführten Werte.

Während in der Auswertung nach dem dritten Wärmehauptsatz die thermodynamischen Funktionen von gasförmigem und festem NaF eine wesentliche Rolle spielen, wird die Sublimationswärme $\Delta H_0^{\circ(i)}$,

Abb. 3. Sublimationswärmen von monomerem NaF bei 0°K, berechnet nach dem 3. Wärme-Hauptsatz

berechnet nach dem zweiten Wärmehauptsatz, vor allem durch die Temperaturabhängigkeit der Partialdrucke bestimmt. Eine mangelnde Übereinstimmung dieser beiden Werte sowie ein Gang der nach Gl. (16) für verschiedene Temperaturen berechneten Sublimationswärmen weist auf

Abb. 4. Sublimationswärmen von (NaF), bei 0°K, berechnet nach dem 3. Wärme-Hauptsatz

eine unrichtige Temperaturabhängigkeit der Partialdrucke hin. Im vorliegenden Falle kann die Übereinstimmung als befriedigend angesehen werden. Der Fehler in den Sublimationswärmen, der auf Fehlermöglichkeiten in den Dampfdruckmessungen zurückgeführt werden kann, wird auf \pm 0,7 kcal/Mol geschätzt.

Monatshefte für Chemie, Bd. 98/3

1096 F. Entner u. a.: Dampfdruckmessungen an festem Natriumfluorid

Dem Vorstand des Institutes für Physikalische Chemie der Universität Wien, Herrn Prof. Dr. *H. Nowotny*, danken wir für sein stetes Interesse und die wohlwollende Förderung, die er uns angedeihen läßt.

Herrn Dir. Dr. F. Benesovsky und Herrn Ing. A. Pohler, Metallwerk Plansee A.G., Reutte, Tirol, sind wir für die Anfertigung der Effusionszellen und für die Überlassung verschiedener Materialien zu großem Dank verpflichtet.

Der eine von uns (P. E.) dankt Herrn Generaldirektor Dr. H. Thiemann und Herrn Prof. Dr. L. Jansen, Battelle-Institut, Genf, für die großzügige Gewährung eines Stipendiums.